This exercise aims to show how the partial fractions decomposition works:
\(
\begin{align*}
& \frac{1}{x(x+1)(x+2)^2} = \frac{A}{x}\:+ \frac{B}{x+1}\:+ \frac{C}{x+2}\:+ \frac{D}{(x+2)^2}
& \color{gray}{\text{[Denominator already factored]}} \\[5pt]
& \left( \frac{1}{x(x+1)(x+2)^2} = \frac{A}{x}\:+ \frac{B}{x+1}\:+ \frac{C}{x+2}\:+ \frac{D}{(x+2)^2} \right) x(x+1)(x+2)^2
& \color{gray}{\text{[Multiply the equation by the factors]}} \\[5pt]
& 1 = A(x+1)(x+2)^2\:+ Bx(x+2)^2\:+ Cx(x+1)(x+2)\:+ Dx(x+1)
& \color{gray}{\text{[Main equation to solve]}} \\[5pt]
& 1 = 4A\:+ \color{red}{0B}\:+ \color{red}{0C}\:+ \color{red}{0D}
& \color{gray}{\text{[If x=0]}} \\[5pt]
& \color{blue}{A = \frac{1}{4}} \\\\
& 1 = A(x+1)(x+2)^2\:+ Bx(x+2)^2\:+ Cx(x+1)(x+2)\:+ Dx(x+1)
& \color{gray}{\text{[Main equation to solve]}} \\[5pt]
& 1 = \color{red}{0A}\:- B\:+ \color{red}{0C}\:+ \color{red}{0D}
& \color{gray}{\text{[If x=-1]}} \\[5pt]
& \color{blue}{B = -1} \\\\
& 1 = A(x+1)(x+2)^2\:+ Bx(x+2)^2\:+ Cx(x+1)(x+2)\:+ Dx(x+1)
& \color{gray}{\text{[Main equation to solve]}} \\[5pt]
& 1 = \color{red}{0A}\:+ \color{red}{0B}\:+ \color{red}{0D}\:+ 2D
& \color{gray}{\text{[If x=-2]}} \\[5pt]
& \color{blue}{D = \frac{1}{2}} \\\\
& 1 = A(x+1)(x+2)^2\:+ Bx(x+2)^2\:+ Cx(x+1)(x+2)\:+ Dx(x+1)
& \color{gray}{\text{[Main equation to solve]}} \\[5pt]
& 1 = 18A+9B+6C+2D
& \color{gray}{\text{[If x=1]}} \\[5pt]
& 1 = 18\left(\frac{1}{4}\right)\:+ 9(-1)\:+ 6C\:+ 2\left(\frac{1}{2}\right) \\[5pt]
& 1 = \frac{9}{2}-9+6C+1 \\[5pt]
& \color{blue}{C = \frac{3}{4}}
\end{align*}
\)
Update the partial fractions with the new found values:
\(
\begin{align*}
\frac{1}{x(x+1)(x+2)^2} = \color{green}{\frac{1}{4x}\:- \frac{1}{x+1}\:+ \frac{3}{4(x+2)}\:+ \frac{1}{2(x+2)^2}}
\end{align*}
\)